Search This Blog

Tuesday, March 15, 2011

GE Scientists Demonstrate Breakthrough Thermal Material System to Enable Faster Computing

NISKAYUNA, N.Y.-( Business Wire )-
Scientists in GE’s Global Research Center have demonstrated an advanced thermal material system that could pave the way to faster computing and higher performing electronic systems. Leveraging technologies developed under GE’s Nanotechnology Advanced Technology Program, they have fabricated a prototype substrate that can cool electronic devices such as a laptop computer twice as well as copper. To learn more about this breakthrough, visit http://visualization.geblogs.com/visualization/nanotech/.


A diagram of GE's advanced thermal material system. Leveraging unique surface engineered coatings that both repel and attract water, GE's system achieves twice the heat conducting properties of copper and can function under extreme forces of gravity. The improved heat properties will enable a wide range of better electronics applications, ranging from faster laptops and more advanced radar systems to better aviation and naval electronic control systems.
Since the dawn of the electronics age, copper has been a preferred material to cool electronics because of its favorable heat conducting properties. But as electronic systems become more advanced, they are generating more and more heat. Too much heat can limit the overall performance of these systems, impacting computing speed and processing power. New breakthrough materials will be needed to enable more advanced systems and applications.

The development of GE’s prototype substrate, which utilizes phase-change-based heat transfer, is part of a four year, $6 million program funded by the Defense Advanced Research Program Agency (DARPA, Contract # No. N66001-08-C-2008). As the leading organization of the program, GE Global Research has been collaborating with GE Intelligent Platforms, the Air Force Research Laboratory, and University of Cincinnati on the project.

Dr. Tao Deng, a senior scientist at GE Global Research and the project leader, said, “As electronics become more advanced, we are approaching the point where conventional materials like copper can’t take the heat. For computing to go faster and electronics systems to become more capable, better cooling solutions such as GE’s prototype substrate will be required to allow this to happen.”

Deng added, “In demonstrations, GE’s prototype substrate has functioned effectively in a variety of electronics application environments. We also subjected it to harsh conditions during testing and found it could successfully operate in extremely high gravity applications.”

For more information, read Tao’s blog on Edison’s Desk at http://ge.geglobalresearch.com/blog/a-breakthrough-in-conducting-heat-for-electronics/.


Deng noted that GE’s prototype operated in conditions experiencing more than 10 times the normal force of gravity. By comparison, this gravity force is more than twice the maximum force experienced on the world’s fastest roller coasters.


How it Works

GE’s phase-change based prototype substrate can be applied to computer chips and a variety of different electronic components. It acts as a cooling mechanism that spreads or dissipates the heat generated in electronic systems to keep components cool.

During testing at the Air Force Research laboratories, GE’s research team successfully demonstrated a prototype substrate that was measured to have at least twice the thermal conductivity as copper at only one–fourth of its weight. In addition, the prototype successfully operated in a condition that was more than 10 times normal gravity.

With high thermal conductivity, low weight, and high “G” acceleration performance, this substrate could work well in a variety of different systems, ranging from laptop computers to larger scale, more sophisticated computing systems that run the avionics and electronic control systems on board jetliners and other aircraft.

In collaboration with various agencies from the US government, GE Global Research has been developing several advanced thermal technologies. Besides the DARPA effort, Dr. Deng is also leading a team, supported by Air Force Research Laboratory, to develop advanced thermal solutions for high-speed flight in a 1.5-year, $1 MM effort. These efforts will build a total thermal solution platform to serve multiple GE businesses, including GE Aviation, GE Energy, and GE Intelligent Platforms.

About GE Global Research

GE Global Research is the hub of technology development for all of GE's businesses. Our scientists and engineers redefine what’s possible, drive growth for our businesses, and find answers to some of the world’s toughest problems.

We innovate 24 hours a day, with sites in Niskayuna, New York; Bangalore, India; Shanghai, China; Munich, Germany; and our newest location in Rio de Janeiro, Brazil. Visit GE Global Research on the web at www.ge.com/research. Connect with our technologists at http://edisonsdesk.com and http://twitter.com/edisonsdesk.

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Photos/Multimedia Gallery Available: http://www.businesswire.com/cgi-bin/mmg.cgi?eid=6647570&lang=en

GEMedia RelationsTodd Alhart, 518-387-7914todd.alhart@ge.com

http://www.gereports.com/tag/intelligent-platforms/


Your feedback is always welcome.
Thank you!
http://www.winncad.com/
http://www.docstoc.com/profile/corona7
http://www.linkedin.com/pub/paul-corona/10/63a/200
http://www.scribd.com/crown%20007
http://www.facebook.com/people/WinnCad-Elements/100001525374479
http://www.youtube.com/user/Winncad

No comments:

Post a Comment